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Abstract 

High-mobility Ge nMOSFETs with ZrO2 gate dielectric are demonstrated and compared against transistors with differ-
ent interfacial properties of ozone (O3) treatment, O3 post-treatment and without O3 treatment. It is found that with 
O3 treatment, the Ge nMOSFETs with ZrO2 dielectric having a EOT of 0.83 nm obtain a peak effective electron mobil-
ity (μeff) of 682 cm2/Vs, which is higher than that of the Si universal mobility at the medium inversion charge density 
(Qinv). On the other hand, the O3 post-treatment with Al2O3 interfacial layer can provide dramatically enhanced-μeff, 
achieving about 50% μeff improvement as compared to the Si universal mobility at medium Qinv of 5 × 1012 cm−2. 
These results indicate the potential utilization of ZrO2 dielectric in high-performance Ge nMOSFETs.
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Background
GERMANIUM (Ge) has exhibited advantages of higher 
carrier mobility and lower processing temperature com-
pared with Si devices. These make Ge to be an alterna-
tive for applications of ultrascaled CMOS logic devices 
and thin-film transistors (TFTs) as top layer in three-
dimensional integrated circuits [1–3]. In the past few 
years, great efforts have been focused on surface pas-
sivation, gate dielectric, and channel engineering for Ge 
p-channel metal–oxide–semiconductor field-effect tran-
sistors (MOSFETs), which have contributed to significant 
improvement in electrical performance for the p-channel 
devices.

But for Ge n-channel MOSFETs, low effective carrier 
mobility (μeff) caused by poor interfacial layer of gate 
stack strongly limits the performance of the devices. 
Various surface passivation techniques including Si pas-
sivation [1], plasma post-oxidation [4], and InAlP passi-
vation [5] and several high-κ dielectrics including HfO2, 

ZrO2 [6–8], Y2O3 [9], and La2O3 [10] have been explored 
in Ge nMOSFETs to boost the electron μeff. It was dem-
onstrated that ZrO2 dielectric integrated with Ge channel 
can provide a robust interface due to that a GeO2 inter-
facial layer can react and intermix with the ZrO2 layer 
[7]. A decent hole μeff has been reported in Ge p-chan-
nel transistors [6–8], while there is still a lot of room for 
improvement in electron μeff for their counterparts.

In this work, Ge nMOSFETs with ZrO2 gate dielec-
tric are fabricated to achieve improved μeff over Si in the 
entire range of inversion charge density (Qinv). Ge tran-
sistors obtain a 50% improvement in electron μeff com-
pared to the Si universal mobility at a medium Qinv of 
5.0 × 1012 cm−2.

Experimental
The key process steps for fabricating Ge nMOSFETs 
on 4-inch p-Ge(001) wafers with a resistivity of 0.136–
0.182 Ω cm are shown in Fig. 1a. The source/drain (S/D) 
regions were implanted with phosphorous ion at a dose 
of 1 × 1015  cm−2 and an energy of 30  keV followed by 
dopant activation annealing at 600 °C. After the pre-gate 
cleaning, Ge wafers were loaded into an atomic layer 
deposition chamber for the formation of the gate die-
lectric layer(s): Al2O3/O3 oxidation/ZrO2, ZrO2, or O3 
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oxidation/ZrO2 for wafers A, B, or C, respectively. For 
wafer A, 0.9 nm Al2O3 was used to protect the channel 
surface during O3 oxidation. O3 oxidation was carried 
out at 300 °C for 15 min for both wafers A and C. For all 
the wafers, the thickness of ZrO2 was ~ 3.3  nm. Subse-
quently, TiN(100 nm) gate metal was deposited via physi-
cal reactive sputtering, and lithography patterning and 
reactive ion etching were used to form the gate electrode. 
After that, a 25-nm-thick Ni layer was deposited in S/D 
regions. Finally, the post-metallization annealing (PMA) 
at 350 °C for 30 s was carried out to form the Ni germa-
nide and improve the interface quality. Schematic and 
microscope images of the fabricated transistor are shown 
in Fig. 1b, c, respectively.

Figure  2a, b shows the high-resolution transmission 
electron microscope (HRTEM) images of the gate stacks 
on wafers A and B, respectively. The unified thickness 
of the Al2O3/GeOx interfacial layer (IL) for wafer A is 
~ 1.2 nm indicating the 0.2–0.3 nm GeOx. For the device 
on wafer B, an ultrathin GeOx IL was experimentally 
demonstrated [7].

Results and Discussion
The measured capacitance (C) and the leakage current 
(J) characteristics for Ge MOS capacitors on wafers A, B, 
and C are measured and shown in Fig. 3a, b, respectively. 
The equivalent oxide thickness (EOT) of the devices 

on wafers A, B, and C is extracted to be 1.79, 0.59, and 
0.83 nm, respectively. Assuming the GeOx IL provides an 
extra EOT of ~ 0.25 nm for wafers A and C by comparing 
wafers B and C, the 3.3 nm ZrO2 contributes an EOT of 
~ 0.6 nm with κ value of ~ 21.8, which is consistent with 
the previous reported value of amorphous ZrO2 [11].
These derived results also confirm that the thickness in 
GeOx IL on wafer B is negligible.

The GeOx/Al2O3 IL for wafer A and GeOx IL for wafer 
C produces the EOT of ~ 1.2 and ~ 0.25  nm, respec-
tively. The EOT of the devices can be further reduced 
by decreasing the IL thickness or improving the inter-
face quality, and enhancing the permittivity of ZrO2 with 
some surface passivation, e.g., NH3/H2 plasma treatment 
[6]. Figure 3c compares J versus EOT characteristics for 
the Ge nMOSFETs in this work against values for other 
reported Ge devices [5, 12–17]. It is also observed that 
the results are consistent with the reported Ge MOS with 
ultra-thin EOT following the same trends, indicating the 
difference of leakage current shown in Fig. 3b should be 
mainly attributable to the difference of EOT.

Figure  4a shows measured drain current (ID) and 
source current (IS) versus gate voltage (VG) curves of 
Ge nMOSFETs from wafers A, B, and C. All transis-
tors have a gate length LG of 4  μm and a gate width W 
of 100 μm. The point subthreshold swing (SS), defined as 
dVG/d(logID), as a function of ID curves for the transistors 
in Fig. 4a is calculated and shown in Fig. 4b. It is clarified 
that the transistor on wafer A exhibits the degraded ID 
leakage floor and SS compared to the devices on wafers 
B and C. Besides the increase in EOT in devices on wafer 
A would bring in the increment of SS, these phenomenon 
should be partly attributed to the fact that the device with 
the Al2O3 inserted layer has a higher density of interface 
traps (Dit) within the bandgap of the Ge channel in com-
parison with the wafers B and C.

Figure  4c shows the measured output characteristics, 
i.e., ID–VD curves for various values of gate overdrive 
|VG–VTH| of the devices demonstrating that the Ge tran-
sistor on wafer A achieves significantly improved drive 
current compared to the devices on wafers B and C. Here, 
VTH is defined as VGS corresponding to an ID of 10−7 A/
μm. Considering the identical conditions for S/D forma-
tion, the boosted IDS for transistors on wafer A indicates 
the higher μeff [18–21]. The Al2O3 layer has not led to 
the degradation of Dit performance near the conduction 
band of the Ge channel.

Figure  5a shows the total resistance Rtot as a function 
of LG for the Ge nMOSFETs with ZrO2 dielectric with 
an LG ranging from 2 to 10  µm. The values of Rtot are 
extracted at a gate overdrive of 0. 6 V and a VD of 0.05 V. 
The S/D resistance RSD of the transistors is extracted to 
be ~ 13.5 kΩ μm, utilizing the fitted lines intersecting at 
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the y-axis. The similar RSD is consistent with the identical 
process of PMA and S/D formation. The channel resist-
ance RCH values of the devices are obtained by the slope 
of the fitted lines, i.e., ΔRtot/ΔLG, which can be used for 
calculating the μeff characteristics of Ge nMOSFETs. To 
evaluate the interface quality, interface trap densities (Dit) 
were extracted by the following equation according to 
Hill’s method [17]:

where q is the electronic charge, A is the area of the 
capacitor, Gm,max is the maximum value of measured 
conductance, with its corresponding capacitance Cm, 
ω is the angular frequency, and Cox is gate oxide capaci-
tance. The Dit values are calculated to be 3.7, 3.2, and 
2.3 × 1012 eV−1 cm−2 for the devices on wafers A, B, and 
C, respectively.

It is known that the calculated values correspond to the 
midgap Dit. The device with Al2O3 IL on wafer A has a 

Dit =
2Gmmax/ω

qA
[(

Gmmax

ωCox

)

+ (1− Cm/Cox)
2

]

higher midgap Dit compared to the devices on wafers B 
and C. This is consistent with the results in Figs. 3a and 
4a, and the higher midgap Dit gives rise to a larger deple-
tion capacitance dispersion in wafer A causing a higher 
leakage current of IDS in comparison with the other two 
wafers. Note the wafer A should have the lower Dit near 
the conduction bandgap due to its higher μeff over wafers 
B and C.

It is well known that μeff is the bottleneck for high drive 
current and transconductance in Ge nMOSFETs. Here, 
μeff can be calculated by µeff = 1/[WQinv(�Rtot/�LG)] , 
where ΔRtot/ΔLG is the slope of the Rtot versus LG as 
shown in Fig.  5a. Qinv can be obtained by integrating 
the measured Cinv–VG curves. In Fig.  5b, we compare 
the μeff versus Qinv of the Ge nMOSFETs on wafers A, B, 
and C with those reported previously in [18, 22–25]. The 
extracted peak μeff values of the transistors on wafers A 
and C are 795 and 682 cm2/V s, respectively, and that of 
Ge nMOSFETs on wafer B is 433 cm2/V s. Ge nMOSFETs 
with Al2O3 IL achieve a significantly improved μeff in com-
parison with the transistors on wafer B or C, the devices 

Fig. 3  a Measured C as a function of voltage V characteristics for Ge pMOS capacitors on wafers A, B, and C. b J versus V curves for the devices. c 
Benchmarking of J (extracted at VFB ± 1 V) of the Ge MOS capacitors in this work against data obtained for similar bias conditions from the literature
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Fig. 5  a Rtot versus LG curves for Ge nMOSFETs on wafers A, B, and C. The fitted line intersecting at the y-axis and the slope of linear fit lines are 
utilized to extract the RSD and RCH, respectively. b μeff for the Ge nMOSFETs in this work versus previously published results for unstrained Ge 
transistors. The devices on wafer A show the improved μeff than the Si universal mobility in the entire range of Qinv
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in [18, 22–25] in a high field, and Si universal mobility in 
the entire Qinv range. At a Qinv of 5 × 1012 cm−2, a 50% μeff 
enhancement is achieved in devices on wafer A as com-
pared to the Si universal mobility. This demonstrates 
that by protecting the channel surface for preventing the 
intermixing of ZrO2 and GeOx using Al2O3, a high-qual-
ity interface between gate insulator and Ge is realized to 
boost the mobility characteristics, which is also reported 
in the previous studies of Ge MOSFETs with ultrathin 
EOT [26]. μeff in transistors on wafer C is higher than the 
Si universal at a Qinv of 2.5 × 1012  cm−2, although it rap-
idly decays with the increase in Qinv range. This indicates 
that the used O3 oxidation before ZrO2 deposition would 
improve the interfacial quality to some extent; however, it 
does not lead to enough flat channel surface to effectively 
suppress the surface roughness scattering of the carrier at 
high Qinv due to the intermixing of ZrO2 and GeOx, since 
it is reported that the generation of oxygen vacancies 
during the intermixing would increase the short-range 
order (SRO) roughness [27]. Optimizing the O3 oxidation 
process or reducing the Al2O3 IL thickness can make the 
Ge transistor achieve a reduced EOT while maintaining a 
higher μeff at the high Qinv.

Conclusions
The impacts of gate dielectric structure and morphol-
ogy on Ge nMOSFET electrical characteristics are 
investigated. An Al2O3/ZrO2 gate dielectric provides for 
significantly-improved μeff as compared to the Si univer-
sal mobility. μeff can be improved by inserting an Al2O3 
layer between the ZrO2 and Ge channel, which, however, 
inevitably leads to a larger EOT. Al2O3-free Ge nMOS-
FETs with O3 oxidation of the Ge surface prior to ZrO2 
deposition achieve a peak μeff of 682  cm2/V  s which is 
higher than that of Si at the similar Qinv.
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